Flexible epoxy resin curing agent

RIKACID[™] HF-08

RIKACID[™] HF-08 is a flexible epoxy resin curing agent developed by our company. The epoxy cured product exhibits excellent flexibility and transparency when used with our acid anhydrides such as RIKACID[™] MH−700.

Feature

- □ It is a compound having a carboxyl group at both ends of the flexible structure.
- The formulation of HF-08 gives the epoxy cure flexibility while maintaining a relatively high Tg, and can improve impact resistance.
- The epoxy cured product with excellent transparency is obtained, and it is excellent in yellowing resistance during heat aging.
- It does not cause a large decrease in moisture resistance of epoxy cured products.
- It exhibits its characteristics in combination with various epoxy resins such as bisphenol A epoxy resin and alicyclic epoxy resin.

Typical properties

Table 1. Typical properties of HF-08

Appearance	Clear viscous liquid				
Color (Hazen)	<100				
Equivalent of carboxyl group	310~360				
Viscosity [mPa⋅s] (100°C)	150~210				
	60806-75-9				

XThese values are not guaranteed.

<Calculation of equivalent amount when HF-08 is blended.>

In this technical data, the equivalent calculation was performed assuming that one epoxy group and one acid anhydride group or one carboxyl group react.

Temperature dependence of viscosity of HF-08

Figure 1 shows the temperature dependence of the viscosity of HF-08.

Foaming suppression effect at curing

Table 2 shows the foam suppression effect by the addition of HF-08. The addition of HF-08 has the effect of suppressing foaming during curing.

Formulation No.		1	2	3	Remarks
Formulation [p.b.w] Equivalent ratio = 1.0	CELLOXIDE [™] 2021P ^{※1}	100	100	100	Epoxy equivalent = 130
	RIKACID [™] MH−700 ^{%2}	126	120	112	Equivalent of acid anhydride = 164
	RIKACID™ HF−08	-	13	28	Carboxyl group equivalent = 336
	TPP-PB ^{%3}	1	1	1	Accelerator
Blending ratio of HF-08 (wt% / curing agent)		0	10	20	Curing agent = MH-700+HF-08
Foamed state at curing		×	Δ	0	_

Table	2	Foam	suppression	effect	hv [·]	the	addition	of	HF-08	8
I abie	۷.	i Uam	Suppression	enect	IJУ	uie	audition	UI.	111 00	J

X1 CELLOXIDE[™] 2021P: Alicyclic epoxy resin (Daicel Corporation)

※2 RIKACID™ MH-700: 4-methyl cyclohexane-dicarboxylic anhydryde/cyclohexane-dicarboxylic anhydryde = 70/30 (wt%) (New Japan Chemical Co., Ltd.)

3 TPP-PB: Tetraphenyl phosphonium bromide (HOKKO CHEMICAL INDUSTRY CO., LTD.)

Curing condition: $120^{\circ}C/1h + 150^{\circ}C/2h$

Equivalent ratio = (Acid anhydride group + carboxyl group) / epoxy group

<Foaming state evaluation conditions>

7 g of the epoxy composition was weighed in a test tube of ϕ 15 mm, and after hardening, the rise height from the initial liquid level due to foaming was measured, and the foamed state was visually observed.

2/6

O: no foam, no interface rise, Δ : slightly foam, interface rise \leq 5 mm, \times : foam, interface rise> 5 mm

Impact resistance improvement

The relationship between the equivalent ratio and the impact resistance when HF-08 is added according to the composition shown in Table 3 is shown in Figure 2. Impact resistance can be greatly improved by adding HF-08. In particular, the effect is maximum around the equivalent ratio of 0.8.

Fig 2. Relationship between impact resistance and equivalent ratio

- < Impact resistance test conditions>
- JIS K5600: According to drop impact test
- Drop load: 100g
- Sample : Cured 2.5mm thick, see Table 3 for compounding and curing conditions.
- •Measure the drop height where no crack occurs when the weight is dropped.

Table 3. Formulation [p.b.w] (Equivalent ratio = 1.0)

Formulation No.	1	2	3	Remarks		
CELLOXIDE [™] 2021P ^{%1}	100	100	100	Epoxy equivalent = 130		
RIKACID™ MH−700 ^{※2}	126	112	96	Equivalent of acid anhydride = 164		
RIKACID™ HF−08	_	28	63	Carboxyl group equivalent = 336		
TPP-PB ^{%3}	1	1	1	Accelerator		
Blending ratio of HF-08 (wt% / curing agent)	0	20	40	Curing agent = MH-700+HF-08		

※1 CELLOXIDE[™] 2021P: Alicyclic epoxy resin (Daicel Corporation)

※2 RIKACID™ MH-700: 4-methyl cyclohexane-dicarboxylic anhydryde/cyclohexane-dicarboxylic anhydryde = 70/30 (wt%) (New Japan Chemical Co., Ltd.)

※3 TPP-PB: Tetraphenyl phosphonium bromide (HOKKO CHEMICAL INDUSTRY CO., LTD.) Curing condition: $120^{\circ}C/1h + 150^{\circ}C/2h$

■ Influence on heat resistance

The relationship between the Tg of the epoxy cured product and the equivalent ratio when HF-08 is added is shown in Figure 3. When the addition amount of HF-08 is 20wt%, almost no decrease of Tg occurs at the equivalent ratio of 0.8 to 1.2.

Fig 3. The relationship of Tg and equivalent ratio

Impact on moisture resistance

Figure 4 shows the relationship between boiling water absorption and equivalent ratio when HF-08 is added. When the amount of HF-08 added is 20 wt%, the moisture resistance hardly decreases at an equivalent ratio of 0.8 to 1.0.

Fig 4. Relationship between boiling water absorption and equivalent ratio

Effect on heat resistant yellowing

Figures 5 to 7 show the relationship between thermal yellowing and equivalent ratio when HF-08 is added. By optimizing the equivalent ratio, clear and colorless epoxy cured products can be obtained.

Fig 6. Relationship between heat resistance yellowing and equivalent ratio (HF-08: 20wt% / curing agent)

<Thermal yellowing measurement condition > •Evaluate the light transmittance of wavelength 400nm with UV-visible spectrophotometer. •Sample: Cured 5mm thick •Compounding and curing conditions are the same as in Table 3. •Heat aging process: Use 150 °C gear oven

🍥 New Japan Chemical Co., Ltd.

Physical properties of bisphenol A epoxy resin at curing

Table 4 shows the curing properties when using bisphenol A epoxy resin. By adding HF-08, significant improvement in flexibility is possible.

Formulation No.		1	2	3	4	Remarks
	jER [™] 828 ^{%1}	100	100	100	100	Epoxy equivalent = 185
Formulation [p.b.w]	RIKACID™ MH−700 ^{※2}	86	80	70	50	Equivalent of acid anhydride = 164
Equivalent ratio = 1.0	RIKACID™ HF−08	0	15	35	65	Carboxyl group equivalent = 336
	LUVEAK [™] DMP−30 ^{※3}	0.5	0.5	0.5	0.5	Accelerator
Blending ratio of HF-08(wt% / curing agent)		0	16	33	57	Curing agent = MH-700+HF-08
Thermal shock value (point)		0	1	3	10	C-shaped washer method
Heat distortion temperature [°C]		139	108	84	55	
Bending strength [MPa]		122	115	106	97	
Volume resistivity (25°C) [$\Omega \cdot cm$]		1 × 10 ¹⁶	Based on JIS K5000-5-4			
Boiling wate	0.23	0.42	0.59	0.82		

Table 4. Curing properties of bisphenol A type epoxy resin

※1 jER[™] 828: Bisphenol A epoxy resin (Mitsubishi Chemical Corporation)

※2 RIKACID™ MH-700: 4-methyl cyclohexane-dicarboxylic anhydryde/cyclohexane-dicarboxylic anhydryde = 70/30 (wt%) (New Japan Chemical Co., Ltd.)

3 LUVEAK[™] DMP-30: 2,4,6-Tris(dimethylaminomethyl)phenol (NACALAI TESQUE, INC.) Curing condition: $120^{\circ}C/1h + 150^{\circ}C/2h$

<C-shaped washer method evaluation method>

A steel washer of ϕ 27 mm was embedded, and the points until the occurrence of a crack when heat cycles were given in the following table were compared. However, when a crack was generated in the step of producing a cured product, it was regarded as point 0.

Point	1	2	3	4	5	6	7	8	9	10	11
Temperature [°C]	25	5	25	—15	25	-35	25	-55	25	130	-55
Time [min]	_	10	30	10	30	10	30	10	30	30	10

Inquiry

Please contact us at the following address, if you want to ask about these Technical Bulletin.

New Japan Chemical Co., Ltd. (http://www.nj-chem.co.jp/en/)

Osaka head office Polymer Materials Marketing & Sales Dept. Marketing & Sales Division Bingomachi Nomura BLDG., 2-1-8, Bingomachi, Chuo-ku, Osaka 541-0051 TEL. +81-(0)6-6203-3962 FAX. +81-(0)6-6202-7784

Tokyo office Polymer Materials Marketing & Sales Dept. Marketing & Sales Division GREEN OAK KAYABACHO., 1-3-3, Sinkawa, Chuo-ku, Tokyo 104-0033 TEL. +81-(0)3-5540-8106 FAX. +81-(0)-3-3297-1251

